- Find the distance between this line and parallel plane:
\[
\underline r = \left(\begin{array}{c} -5\\2\\1\\\end{array}\right) + \lambda \left(\begin{array}{c} -3\\1\\2\\\end{array}\right) \\
\underline r \cdot \left(\begin{array}{c} 1\\3\\0\\\end{array}\right) = 4
\]
[6 marks]
- Find the equation of the line where these 2 planes meet in the form $ \underline r \times \underline u = \underline v$
\[x+3y-z=2 \\ 2x-y-z = 1 \]
[4 marks]
- Find the eigenvalues and assosciated normalised eigenvectors for this linear transformation:
\[
A = \left(\begin{array}{ccc} -2&-4&2 \\ -2&1&2\\ 4&2&5 \\ \end{array}\right)
\]
[8 marks]
-
Find the 3x3 matrix for the transformation represented by T.
\[
T: \left(\begin{array}{c} x\\y\\z\\\end{array}\right) \rightarrow \left(\begin{array}{c} x+y\\x-2y\\3z\\\end{array}\right)
\]
Find the image of the line:
\[
\underline r = \left(\begin{array}{c} -5\\2\\1\\\end{array}\right) + \lambda \left(\begin{array}{c} -3\\1\\2\\\end{array}\right)
\]
[4 marks]
- Find the the shortest distance between these lines
\[
\underline r = \left(\begin{array}{c} -1\\1\\0\\\end{array}\right) + \lambda \left(\begin{array}{c} 3\\1\\0\\\end{array}\right) \\
\underline r = \left(\begin{array}{c} -2\\3\\-1\\\end{array}\right) + \mu \left(\begin{array}{c} -3\\4\\2\\\end{array}\right)
\]
[5 marks]
"Eat, live and breathe Mathematics."
Do not leave any personal details in posts.
Wednesday, 27 January 2016
Further Maths Homework due 3.2.16
Total: 27 marks. Show all working out. Those not showing mathematical rigour will be penalised.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment