Loading [MathJax]/extensions/MathEvents.js

Tuesday, 29 September 2015

5.1 Hwk Answers due 29 Sept 15

To be done neatly in the front of your books
TOTAL 22 marks
  1. The plots shows the curve y=x^2+4x-1

    1. Use the formula to solve the equation x^2+4x-1=0 giving your answers to 2 d.p. (x+2)^2 - 5 = 0 \\ x = -2 \pm \sqrt{5} \\ x=0.24 \text{ or } -4.24
    2. x^2+4x-1=k has no solutions, where k is an integer. Use the plot above to find the maximum value of k k = -6

    [4 marks]

  2. Complete the square x^2+8x-4 and use your answer to solve x^2+8x-4=0 \\ (x+4)^2 - 20 = 0 \\ x=-4 \pm \sqrt{20} \\ x=-4 \pm 2\sqrt{5}

    [3 marks]

  3. Y varies indirectly as the square root of x. If y=7 when x=4, then:
    1. Find a formula for y in terms of x y=\frac{k}{\sqrt x} \\ k = 7 \times 2=14 \\ \therefore y=\frac{14}{\sqrt x}
    2. Find y when x=10 to 3 s.f. y = 14 \div \sqrt{10} = 4.43
    3. Find x when y=2.2 x=(\frac{14}{y})^2 = (\frac{14}{2.2})^2 = 40.5

    [4 marks]

  4. Find the image of the point (-2, -3) under the transformation represented by M \begin{pmatrix} 4 & -3 \\ -5 & -7 \end{pmatrix} \begin{pmatrix} -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 31 \end{pmatrix} \\ \text{Point is } (1,31)

    [2 marks]

  5. Find the 2x2 matrix which represents a reflection in the x axis. \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

    [2 marks]

  6. Write 2x^2+6x -3 in the form a(x+b)^2 +c. 2(x+\frac{3}{2})^2 - \frac{15}{2}

    [3 marks]

  7. Draw up a table of values for -2 \leq x \leq 3 for the function y=x^3 -2x^2+x-3 and use it to sketch the curve neatly (and with appropriate scales). \begin{array}{|c|c|c|c|c|c|c|} \hline \ x & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline \ y & -21 & -7 & -3 & -3 & -1 & 9 \\ \hline \end{array}

    [4 marks]

No comments:

Post a Comment