-
\[
\\13000 \times 0.85^? = 1000
\\0.85^? = \frac{1}{13}
\\?=log_{0.85}{\frac{1}{13}}= 15.8
\]
i.e. 16 years is needed (or you can do it by trial and error on the calculator) YOU DO NOT NEED TO KNOW THE LOG METHOD, trial and error using a calculator is sufficient at this stage
- a.
\begin{align*}
\\y^2 &= 5-3x^2
\\x^2 &= 5-y^2
\\x &=\sqrt{\frac{5-y^2}{3}}
\end{align*}
b. \begin{align*} \\ y(2x^2-1) &= 2x^2+3 && \textit{multiply by denominator} \\ 2x^2y-y&=2x^2+3 && \textit{expand the brackets} \\ 2x^2y-2x^2&=y+3 && \textit{get all the }x^2 \textit{ stuff on the left} \\ x^2(2y-2)&=y+3 && \textit{take out common factor of }x^2 \\ x^2&=\frac{y+3}{2y-2} \\ x&=\sqrt{\frac{y+3}{2y-2}} \end{align*}
-
\[
\\3x -2(30-x)=55
\\3x -60+2x=55
\\5x -60=55
\\x =23
\]
- Rearranging gives \[y=\frac{3}{2}x + \frac{5}{2} \]
Gradient is $\dfrac{3}{2}$, so for the new line: \[ y=\frac{3}{2}x+c \]
Now use (2,-4) in here to get c ie
\begin{align*}
-4 = \frac{3}{2}\times 2 + c
\\ \therefore c = -7
\\ \therefore y=\frac{3}{2}x-7 && \times \textit{both sides by 2 and subtract 3}x
\\2y -3x = -14 && \textit{to get the required format}
\\3x-2y = 14 && \textit{or this, either is fine}
\end{align*}
"Eat, live and breathe Mathematics."
Do not leave any personal details in posts.
Thursday, 6 November 2014
4th Extension answers
Answers to 4th year extension
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment